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Abstract. In a 2022 talk, Iván Ongay Valverde gave a special construction on
topological formulae on the Projective Hierarchy, in which it proceeds primarily

via induction. This construction is now known as a Hierarchical Valverde

Construction. Valverde constructions are used to prove and show particular
projective and σ-projective formulae on the Projective Hierarchy.

1. Introduction

In his original talk, Valverde proved the following:

Theorem 1.1. (Valverde) Given ξ < ω1, every separable metrizable K-Σ1
ξ and

K-Π1
ξ are projectively σ-projective.

in which ”K” in this context is to denote sets (generally analytic) not included
in the Real line, and also:

(1) A space is K-analytic (K-Σ1
1) iff it is the continuous image of a Lindelof

Cech-complete space, and
(2) A space is K-analytic iff it is the USCCV image of the irrationals (or ωω).

The Projective hierarchy formed using K is called the K-projective hierarchy.

Definition 1.1. A space is co-K-analytic (K-Π1
ξ+1) iff it is homeomorphic to the

Stone-Cech remainder of a K-analytic.

We also use the notion of USCCV functions1, a.k.a. Upper-Semi Continuous
Compact-Valued functions, defined as F (x) is USCCV iff F (x) is compact for all
x ∈ X and F is Upper-Semi Continuous. They are important in the fact that they
”meta”-generalize compactifications, especially the Stone-Cech Compactification.

Theorem 1.2. If there exists a USCCV multifunction F : X → Y , then there
exists a Stone-Cech Compactification for all subsets of X in Y .2

The K-Projective hierarchy is constructed as:

Definition 1.2. A topological space is K-Σ1
ξ+1 (respectively, K-Π1

ξ+1), ξ < ω1, if

it is the cont. image of a K-Π1
ξ+1 USCCV function from K-Π1

ξ+1 to K-Σ1
ξ+1 (and

vice versa for K-Π1
ξ+1).

also,

Date: May 2025.
1This is a mild misnomer, as the original notion was of multifunctions.
2We only consider compact Hausdorff spaces.
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Theorem 1.3. If there exists a USCCV multifunction F : X → Y , then there
exists a Stone-Cech remainder for all subsets of X given that X is K-Σ1

ξ+1.

In fact, one can formulate Definition 1.2 in terms of Stone-Cech remainders, in
that a topological space is K-Π1

ξ if it is homeomorphic to the Stone-Cech remain-

der of a K-Σ1
ξ . Also, in Theorem 1.3, X need not be K-Σ1

ξ , and can be replaced

with K-Σ1
ξ replaced by K-Π1

ξ . But there are caveats; the Polish space Y given
the projection formed from C ⊆ X × Y must be Suslin, because non-Polishness of
Topological spaces (which are preserved using Suslin spaces) negates any possibil-
ity of Compactness/Stone-Cech-ness of Y or pretty much C in general under cont.
mappings.3

Valverde ”proved” this in a talk:

Theorem 1.4. Given a K-Π1
ξ space X, βX/X is K-Σ1

ξ., which is represented with
Y.

We know that if X is K-Π1
ξ , then it must be of the form βY/Y . But this results

leads to circularity within Theorem 1.4. Therefore, Theorem 1.4 is false.

2. Proof of Theorem 1.1 and commentary

Proof. To start with (the base case), every separable metrizable K-Σ1
1 space is Σ1

1

trivially.4 For K-Π1
1, per Definition 1.2, it is the continuous image of a USCCV

function from K-Σ1
1. Then there exists a βX (consequence of Theorem 1.3) for a

topological space X which is K-Σ1
1. Given

K-Π1
1 → K-Σ1

1 → βX,

we have that K-Π1
1 → βX using USCCV or similar compactification or function,

which is defined as Stone-Cech with Upper-Semi Continuity.

K-Π1
1

K-Σ1
1 βX

USCCV
Stone-Cech with Upper-Semi Continuity

Stone-Cech

To complete the induction, define a USCCV function from K-Π1
1 to K-Σ1

2 in
that such C ⊆ X × Y is a subset of USCCV. More specifically, there exists a point
of a subset of a top. space X for all subsets of X, such that F : X → Y sends it
in a non-continual manner to Y , in Y ∩ X \ A. We call this a push-up USCCV
function. Also, remark that separable metrizability is required, and comes from
graph(F ).

3Comes from the separability of Polish spaces.
4We can also prove this with USCCV, Polish, and Stone-Cech Compactifications.
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K-Π1
ξ(+η)-space K-Σ1

ξ+1-space

All graphs of F are separable measurable

push-up USCCV

from the graph of USCCV’s inv. functions, are Πξ+1.
from graph(F) being Π1

ξ+1

□

2.1. Commentary. Hierarchical Valverde Constructions are extremely malleable.
Our original proof used graphs of the push-up USCCV’s inv. functions, but we
could have easily used a different embedding or compactification. Indeed, one can
apply this to the Borel Hierarchy or even any hierarchy in general which uses the
Sigma-Pi notation. Let us generalize the graph in the Proof of Theorem 1.1:

Definition 2.1. (A boldface Hierarchical Valverde Construction.)

Π1
1-space Σ1

2-space

•

preserved property under cont or semi-cont.

cont or semi-cont.

property of the cont or semi-cont. being Π1
1

preserved property being Π1
1

and this can be extended to lightface spaces, non-Analytic spaces, and even sets
in the Levy Hierarchy. Especially for the Levy Hierarchy, elementary embeddings
can be used. We use Hierarchical Valverde Cosntructions to show (inductively)
that a certain property holds for all ranks in the Projective hierarchy.

Example 1. Take a subset A of the Real line5 that is co-analytic (Π1
1), and suppose

that there is a homeomorphism f : A → B. To construct B, let the Polish space Y
be the Real line. Then B ⊂ R2 ↾ Π1

1 (R2 resitricted to co-analytic spaces may also
be expressed as R2 ↾ R \ A). Then B is Σ1

2. The Π
1
1-property which is ”contained”

in f is homeomorphisms of (generally complements of) subsets of A× B.

A B

homeomorphisms of C

f

Π1
1Π1

1-preservation

5A separable, metrizable subspace of the Real Line is technically ∆1
1.
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and one can of course show, via induction on Π1
ξ , that there exists a homeomor-

phism

fξ : Π1
ξ-real-line-based spaces → Σ1

ξ+1-real-line-based spaces

in which a ”real-line-based space” is a space constructed recursively using the
Projective hierarchy from either R itself or a subspace of R.

Lemma 2.0.1. Every separable metrizable subspace of the Real line is projectively
σ-projective.

In fact, one can easily generalize the notion of a ”real-line-based space” con-
structed via recursion on the Projective hierarchy to other (sub-)spaces. In Defini-
tion 2.1, the property need not even be Π; it is allowed to be Σ, although Π allows
for a more restrictive function. Take, for example, a certain pathological subset
of A which is non-one-point-compactible, but the homeomorphism (or function in
general) is such that f : X → X∞, denoting the one-point compactification. f
being or having a Π-property would ”remove” this pathological subset, in that it
is not a member of X-complement or similar.

One can also generalize Example 1 to other Topological fields.

Question 1. How much do bases of Topological spaces (when constructed via
recursion of the Projective hierarchy) relate to the basis or top. space of the base
layer of the Projective hierarchy?
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